Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(9): 2529-2536, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38412511

RESUMEN

Electrochemically active liquid organic hydrogen carriers (EC-LOHCs) can be used directly in fuel cells; so far, however, they have rather low hydrogen storage capacities. In this work, we study the electrooxidation of a potential EC-LOHC with increased energy density, 1-cyclohexylethanol, which consists of two storage functionalities (a secondary alcohol and a cyclohexyl group). We investigated the product spectrum on low-index Pt single-crystal surfaces in an acidic environment by combining cyclic voltammetry, chronoamperometry, and in situ infrared spectroscopy, supported by density functional theory. We show that the electrooxidation of 1-cyclohexylethanol is a highly structure-sensitive reaction with activities Pt(111) ≫ Pt(100) > Pt(110). Most importantly, we demonstrate that 1-cyclohexylethanol can be directly converted to acetophenone, which desorbs from the electrode surface. However, decomposition products are formed, which lead to poisoning. If the latter side reactions could be suppressed, the electrooxidation of 1-cyclohexylethanol would enable the development of EC-LOHCs with greatly increased hydrogen storage capacities.

2.
ACS Appl Energy Mater ; 6(22): 11497-11509, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38037630

RESUMEN

Ag-based electrocatalysts are promising candidates to catalyze the sluggish oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFC) and oxygen evolution reaction (OER) in unitized regenerative fuel cells. However, to be competitive with existing technologies, the AEMFC with Ag electrocatalyst must demonstrate superior performance and long-term durability. The latter implies that the catalyst must be stable, withstanding harsh oxidizing conditions. Moreover, since Ag is typically supported by carbon, the strict stability requirements extend to the whole Ag/C catalyst. In this work, Ag supported on Vulcan carbon (Ag/VC) and mesoporous carbon (Ag/MC) materials is synthesized, and their electrochemical stability is studied using a family of complementary techniques. We first employ an online scanning flow cell combined with inductively coupled plasma mass spectrometry (SFC-ICP-MS) to estimate the kinetic dissolution stability window of Ag. Strong correlations between voltammetric features and the dissolution processes are discovered. Very high silver dissolution during the OER renders this material impractical for regenerative fuel cell applications. To address Ag stability during AEMFC load cycles, accelerated stress tests (ASTs) in O2-saturated solutions are carried out in rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) setups. Besides tracking the ORR performance evolution, an ex situ long-term Ag dissolution study is performed. Moreover, morphological changes in the catalyst/support are tracked by identical-location transmission electron microscopy (RDE-IL-TEM). Voltammetry analysis before and after AST reveals a smaller change in ORR activity for Ag/MC, confirming its higher stability. RRDE results reveal a higher increase in the H2O2 yield for Ag/VC after the ASTs. The RDE-IL-TEM measurements demonstrate different degradation processes that can explain the changes in the long term performance. The results in this work point out that the stability of carbon-supported Ag catalysts depends strongly on the morphology of the Ag nanoparticles, which, in turn, can be tuned depending on the chosen carbon support and synthesis method.

3.
Angew Chem Int Ed Engl ; 62(34): e202304293, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37341165

RESUMEN

The degradation of Pt-containing oxygen reduction catalysts for fuel cell applications is strongly linked to the electrochemical surface oxidation and reduction of Pt. Here, we study the surface restructuring and Pt dissolution mechanisms during oxidation/reduction for the case of Pt(100) in 0.1 M HClO4 by combining operando high-energy surface X-ray diffraction, online mass spectrometry, and density functional theory. Our atomic-scale structural studies reveal that anodic dissolution, detected during oxidation, and cathodic dissolution, observed during the subsequent reduction, are linked to two different oxide phases. Anodic dissolution occurs predominantly during nucleation and growth of the first, stripe-like oxide. Cathodic dissolution is linked to a second, amorphous Pt oxide phase that resembles bulk PtO2 and starts to grow when the coverage of the stripe-like oxide saturates. In addition, we find the amount of surface restructuring after an oxidation/reduction cycle to be potential-independent after the stripe-like oxide has reached its saturation coverage.

4.
J Phys Chem Lett ; 14(14): 3589-3593, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37018542

RESUMEN

The first step of electrochemical surface oxidation is extraction of a metal atom from its lattice site to a location in a growing oxide. Here we show by fast simultaneous electrochemical and in situ high-energy surface X-ray diffraction measurements that the initial extraction of Pt atoms from Pt(111) is a fast, potential-driven process, whereas charge transfer for the related formation of adsorbed oxygen-containing species occurs on a much slower time scale and is evidently uncoupled from the extraction process. It is concluded that potential plays a key independent role in electrochemical surface oxidation.

5.
Langmuir ; 39(7): 2761-2770, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753691

RESUMEN

The behaviour of CTAB adsorbed on polycrystalline gold electrodes has been studied using a combination of spectroelectrochemical methods. The results indicate that the formation of the layer is the consequence of the precipitation of the CTAB micelles on the electrode surface as bromide ions, which stabilize the micelles, are replaced by perchlorate anions. This process leads to the formation of CTA+ layers in which perchlorate ions are intercalated, in which the adlayer suffers a continuous rearrangement that leads to the formation of micro-dominions of different types of hydrogen-bonded water populations throughout the adlayer. After prolonged cycling, a stable situation is reached. Under these conditions, water molecules permeate through the adlayer toward the electrode surface at potentials positive of the potential of zero charge, due to the repulsion between the CTA+ layer and the positive charge of the electrode.

6.
ACS Appl Mater Interfaces ; 15(1): 1192-1200, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36578102

RESUMEN

Stabilization of cathode catalysts in hydrogen-fueled proton-exchange membrane fuel cells (PEMFCs) is paramount to their widespread commercialization. Targeting that aim, Pt-Au alloy catalysts with various compositions (Pt95Au5, Pt90Au10, and Pt80Au20) prepared by magnetron sputtering were investigated. The promising stability improvement of the Pt-Au catalyst, manifested in suppressed platinum dissolution with increasing Au content, was documented over an extended potential range up to 1.5 VRHE. On the other hand, at elevated concentrations, Au showed a detrimental effect on oxygen reduction reaction activity. A systematic study involving complementary characterization techniques, electrochemistry, and Monte Carlo simulations based on density functional theory data enabled us to gain a comprehensive understanding of the composition-activity-stability relationship to find optimal Pt-Au alloying for maintaining the activity of platinum and improving its resistance to dissolution. According to the results, Pt-Au alloy with 10% gold represent the most promising composition retaining the activity of monometallic Pt while suppressing Pt dissolution by 50% at the upper potential limit of 1.2 VRHE and by 20% at devastating 1.5 VRHE.

7.
8.
J Phys Chem Lett ; 12(6): 1588-1592, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539102

RESUMEN

In this work, in situ external infrared reflection absorption spectroscopy (IRRAS) is successfully employed for the detection of intermediate species in the oxygen reduction reaction (ORR) mechanism on a flat and well-defined Pt surface. Superoxide anion species (O2-) are detected on the Pt(111) surface in an O2-saturated solution with a NaF/HClO4 mixture with pH 5.5 by the observation of a O-O vibration band at ca. 1080 cm-1. The observation of O2- without the use of any other additional method of signal enhancement is possible because in these experimental conditions O2- is the main ORR-generated intermediate and its reactivity is limited in this pH. This leads to the accumulation of O2- near the Pt surface, facilitating its identification.

9.
ACS Meas Sci Au ; 1(2): 48-55, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36785745

RESUMEN

The interface between the Pt(111) surface and several MeF/HClO4 (Me+ = Li+, Na+, or Cs+) aqueous electrolytes is investigated by means of cyclic voltammetry and laser-induced temperature jump experiments. Results point out that the effect of the electrolyte on the interfacial water structure is different depending on the nature of the metal alkali cation, with the values of the potential of maximum entropy (pme) following the order pme (Li+) < pme (Na+) < pme (Cs+). In addition, the hydrogen peroxide reduction reaction is studied under these conditions. This reaction is inhibited at low potentials as a consequence of the build up of negative charges on the electrode surface. The potential where this inhibition takes place (E inhibition) follows the same trend as the pme. These results evidence that the activity of an electrocatalytic reaction can depend to great extent on the structure of the interfacial water adlayer and that the latter can be modulated by the nature of the alkali metal cation.

10.
J Chem Phys ; 152(13): 134702, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268759

RESUMEN

In this work, the oxygen reduction reaction (ORR) on tellurium-modified Pt(111) surfaces has been studied. Adsorption of Te adatoms on Pt(111) progressively shifts toward less positive values of both the ORR reaction onset and the half-wave potential in 0.1M HClO4 for 0 < θTe < 0.25. However, at θTe > 0.25, the ORR activity increases relative to the one at θTe < 0.25, but remains lower than that on clean Pt(111). Results were analyzed in light of simulations of kinetic currents as a function of θTe, calculated by employing a simple mean field model including both site blocking and electronic effects. Inside this framework, experimental data are best explained by considering that oxygenated Te species inhibit the ORR by either negatively modifying adsorption energies of reaction intermediates or combined site-blocking and electronic effects. A redox ORR catalysis due to redox properties of Te adatoms is discarded. Contrarily, in 0.05M H2SO4, a positive catalytic effect has been found, interpreted in terms of a competitive adsorption-desorption mechanism involving the replacement of adsorbed sulfate by Te adatoms. On the other hand, despite the strong site-blocking effect on Hads and OHads adsorption by Te adatoms, it appears that the reduced Te-Pt(111) adlayer does not inhibit the reaction, suggesting different active sites for Hads and OHads adsorption and for the rate-determining step of the ORR mechanism.

11.
J Am Chem Soc ; 142(2): 715-719, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887023

RESUMEN

The study of the oxygen reduction reaction (ORR) at high-index Pt(hkl) single crystal surfaces has received considerable interest due to their well-ordered, typical atomic structures and superior catalytic activities. However, it is difficult to obtain direct spectral evidence of ORR intermediates during reaction processes, especially at high-index Pt(hkl) surfaces. Herein, in situ Raman spectroscopy has been employed to investigate ORR processes at high-index Pt(hkl) surfaces containing the [011̅] crystal zone-i.e., Pt(211) and Pt(311). Through control and isotope substitution experiments, in situ spectroscopic evidence of OH and OOH intermediates at Pt(211) and Pt(311) surfaces was successfully obtained. After detailed analysis based on the Raman spectra and theoretical simulation, it was deduced that the difference in adsorption of OOH at high-index surfaces has a significant effect on the ORR activity. This research illuminates and deepens the understanding of the ORR mechanism on high-index Pt(hkl) surfaces and provides theoretical guidance for the rational design of high activity ORR catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...